A Critical Oscillation Constant as a Variable of Time Scales for Half-Linear Dynamic Equations

نویسنده

  • Pavel Řehák
چکیده

We present criteria of Hille-Nehari type for the half-linear dynamic equation (r(t)Φ(y∆))∆+p(t)Φ(yσ) = 0 on time scales. As a particular important case we get that there is a a (sharp) critical constant which may be different from what is known from the continuous case, and its value depends on the graininess of a time scale and on the coefficient r. As applications we state criteria for strong (non)oscillation, examine generalized Euler type equations, and establish criteria of Kneser type. Examples from q-calculus and further possibilities for study are presented as well. Our results unify and extend many existing results from special cases, and are new even in the well-studied discrete case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Analysis of Moving Cables with Variable Tension and Variable Speed

Dynamic Analysis of an axially moving cable with time dependent tension and velocity isstudied in this paper. Tension force and the moving speed are assumed to be harmonic.It is found that there exists a specific value of speed in which natural frequency of the system approacheszero. This specific speed for such a critical condition is called critical speed and it will be proved thatincreasing ...

متن کامل

Half-Linear Dynamic Equations

Abstract. We survey half-linear dynamic equations on time scales. These contain the well-known half-linear differential and half-linear difference equations as special cases, but also other kinds of half-linear equations. Special cases of half-linear equations are the well-studied linear equations of second order. We discuss existence and uniqueness of solutions of corresponding initial value p...

متن کامل

First order linear fuzzy dynamic equations on time scales

In this paper, we study the concept of generalized differentiability for fuzzy-valued functions on time scales. Usingthe derivative of the product of two functions, we provide solutions to first order linear fuzzy dynamic equations. Wepresent some examples to illustrate our results.

متن کامل

Oscillation Theorems for Second-Order Half-Linear Advanced Dynamic Equations on Time Scales

This paper is concerned with the oscillatory behavior of the second-order half-linear advanced dynamic equation r t xΔ t γ Δ p t x g t 0 on an arbitrary time scale T with sup T ∞, where g t ≥ t and ∫∞ to Δs/ r1/γ s < ∞. Some sufficient conditions for oscillation of the studied equation are established. Our results not only improve and complement those results in the literature but also unify th...

متن کامل

Triple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian

‎In this paper‎, ‎we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian‎ ‎dynamic equation on time scales‎. ‎We prove the existence at least three positive solutions of the boundary‎ ‎value problem by using the Avery and Peterson fixed point theorem‎. ‎The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly‎. ‎Our results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007